149 research outputs found

    Why disadvantaged neighborhoods are more attractive targetsfor burgling than wealthy ones

    Get PDF
    Despite concerns about crime among the wealthy and middle-class, crime is much more prevalent in poor inner-city neighborhoods than in better off suburbs. In new research, Alyssa W. Chamberlain and Lyndsay N. Boggess explore why wealthier neighborhoods have lower burglary rates – after all, they are more likely to possess more valuable goods. They find that burglars from poorer areas are more likely to target neighborhoods more disadvantaged than their own. They write that not only are wealthier neighborhoods more likely to be further away, increasing the risks for potential burglars; they are also likely to be more socially connected. More disadvantaged neighborhoods, on the other hand, are more likely to be less socially cohesive, making it easier for burglars to remain anonymous

    Infrared receivers for low background astronomy: Incoherent detectors and coherent devices from one micrometer to one millimeter

    Get PDF
    The status of incoherent detectors and coherent receivers over the infrared wavelength range from one micrometer to one millimeter is described. General principles of infrared receivers are included, and photon detectors, bolometers, coherent receivers, and important supporting technologies are discussed, with emphasis on their suitability for low background astronomical applications. Broad recommendations are presented and specific opportunities are identified for development of improved devices

    Extremal discs and the holomorphic extension from convex hypersurfaces

    Full text link
    Let D be a convex domain with smooth boundary in complex space and let f be a continuous function on the boundary of D. Suppose that f holomorphically extends to the extremal discs tangent to a convex subdomain of D. We prove that f holomorphically extends to D. The result partially answers a conjecture by Globevnik and Stout of 1991

    Spin relaxation in (110) and (001) InAs/GaSb superlattices

    Full text link
    We report an enhancement of the electron spin relaxation time (T1) in a (110) InAs/GaSb superlattice by more than an order of magnitude (25 times) relative to the corresponding (001) structure. The spin dynamics were measured using polarization sensitive pump probe techniques and a mid-infrared, subpicosecond PPLN OPO. Longer T1 times in (110) superlattices are attributed to the suppression of the native interface asymmetry and bulk inversion asymmetry contributions to the precessional D'yakonov Perel spin relaxation process. Calculations using a nonperturbative 14-band nanostructure model give good agreement with experiment and indicate that possible structural inversion asymmetry contributions to T1 associated with compositional mixing at the superlattice interfaces may limit the observed spin lifetime in (110) superlattices. Our findings have implications for potential spintronics applications using InAs/GaSb heterostructures.Comment: 4 pages, 2 figure

    Nitrofurantoin-induced pulmonary fibrosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Nitrofurantoin is a commonly used drug in the treatment and prevention of urinary tract infections. Many adverse effects of nitrofurantoin have been documented, including aplastic anemia, polyneuritis, and liver and pulmonary toxicity.</p> <p>Case presentation</p> <p>We describe the clinical history and the autopsy findings in a 51-year-old woman with lung fibrosis of unknown etiology. She had a history of recurrent urinary tract infections, treated with nitrofurantoin for many years. She was referred to our hospital for screening for lung transplantation because of severe pulmonary restriction and dyspnea. Unfortunately, she died as a result of progressive respiratory insufficiency. At autopsy bilateral patchy, sharply circumscribed fibrotic areas in the upper and lower lobes of the lungs were seen with honeycombing. Microscopically, end-stage interstitial fibrosis with diffuse alveolar damage was observed. Due to the atypical distribution of the fibrosis involving both the lower and upper lobes of the lung, the microscopic pattern of the fibrosis and the history of long-term nitrofurantoin use, we concluded that this drug induced the lung fibrosis. The recurrent urinary tract infections were probably caused by a diverticulum of the urinary bladder, which was discovered at autopsy.</p> <p>Conclusion</p> <p>This case shows that the use of nitrofurantoin may cause severe pulmonary disease. Patients with long-term use of nitrofurantoin should be monitored regularly for adverse pulmonary effects.</p

    Sub-millimeter to centimeter excess emission from the Magellanic Clouds. I. Global spectral energy distribution

    Get PDF
    In order to reconstruct the global SEDs of the Magellanic Clouds over eight decades in spectral range, we combined literature flux densities representing the entire LMC and SMC respectively, and complemented these with maps extracted from the WMAP and COBE databases covering the missing the 23--90 GHz (13--3.2 mm) and the poorly sampled 1.25--250 THz (240--1.25 micron). We have discovered a pronounced excess of emission from both Magellanic Clouds, but especially the SMC, at millimeter and sub-millimeter wavelengths. We also determined accurate thermal radio fluxes and very low global extinctions for both LMC and SMC. Possible explanations are briefly considered but as long as the nature of the excess emission is unknown, the total dust masses and gas-to-dust ratios of the Magellanic Clouds cannot reliably be determined.Comment: Accepted for publication by A&

    Spin relaxation of conduction electrons in bulk III-V semiconductors

    Full text link
    Spin relaxation time of conduction electrons through the Elliot-Yafet, D'yakonov-Perel and Bir-Aronov-Pikus mechanisms is calculated theoretically for bulk GaAs, GaSb, InAs and InSb of both nn- and pp-type. Relative importance of each spin relaxation mechanism is compared and the diagrams showing the dominant mechanism are constructed as a function of temperature and impurity concentrations. Our approach is based upon theoretical calculation of the momentum relaxation rate and allows understanding of the interplay between various factors affecting the spin relaxation over a broad range of temperature and impurity concentration.Comment: an error in earlier version correcte

    Convection, Thermal Bifurcation, and the Colors of A stars

    Get PDF
    Broad-band ultraviolet photometry from the TD-1 satellite and low dispersion spectra from the short wavelength camera of IUE have been used to investigate a long-standing proposal of Bohm-Vitense that the normal main sequence A- and early-F stars may divide into two different temperature sequences: (1) a high temperature branch (and plateau) comprised of slowly rotating convective stars, and (2) a low temperature branch populated by rapidly rotating radiative stars. We find no evidence from either dataset to support such a claim, or to confirm the existence of an "A-star gap" in the B-V color range 0.22 <= B-V <= 0.28 due to the sudden onset of convection. We do observe, nonetheless, a large scatter in the 1800--2000 A colors of the A-F stars, which amounts to ~0.65 mags at a given B-V color index. The scatter is not caused by interstellar or circumstellar reddening. A convincing case can also be made against binarity and intrinsic variability due to pulsations of delta Sct origin. We find no correlation with established chromospheric and coronal proxies of convection, and thus no demonstrable link to the possible onset of convection among the A-F stars. The scatter is not instrumental. Approximately 0.4 mags of the scatter is shown to arise from individual differences in surface gravity as well as a moderate spread (factor of ~3) in heavy metal abundance and UV line blanketing. A dispersion of ~0.25 mags remains, which has no clear and obvious explanation. The most likely cause, we believe, is a residual imprecision in our correction for the spread in metal abundances. However, the existing data do not rule out possible contributions from intrinsic stellar variability or from differential UV line blanketing effects owing to a dispersion in microturbulent velocity.Comment: 40 pages, 14 figures, 1 table, AAS LaTex, to appear in The Astrophysical Journa

    Dipole Anisotropy in the COBE DMR First-Year Sky Maps

    Full text link
    We present a determination of the cosmic microwave background dipole amplitude and direction from the COBE Differential Microwave Radiometers (DMR) first year of data. Data from the six DMR channels are consistent with a Doppler-shifted Planck function of dipole amplitude Delta T = 3.365 +/-0.027 mK toward direction (l,b) = (264.4 +/- 0.3 deg, 48.4 +/- 0.5 deg). The implied velocity of the Local Group with respect to the CMB rest frame is 627 +/- 22 km/s toward (l,b) = (276 +/- 3 deg, 30 +/- 3 deg). DMR has also mapped the dipole anisotropy resulting from the Earth's orbital motion about the Solar system barycenter, yielding a measurement of the monopole CMB temperature at 31.5, 53, and 90 GHz, to be 2.75 +/- 0.05 K.Comment: Post Script (4 figures) Ap J 419, 1-6 (1993

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201
    • …
    corecore